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Summary. An account is given of experience gained in implementing computa- 
tional chemistry application software, including quantum chemistry and macro- 
molecular refinement codes, on distributed memory parallel processors. In 
quantum chemistry we consider the coarse-grained implementation of Gaussian 
integral and derivative integral evaluation, the direct-SCF computation of an 
uncorrelated wavefunction,~the 4-index transformation of two-electron integrals 
and the direct-CI calculation of correlated wavefunctions. In the refinement of 
macromolecular conformations, we describe domain decomposition techniques 
used in implementing general purpose molecular mechanics, molecular dynamics 
and free energy perturbation calculations. Attention is focused on performance 
figures obtained on the Intel iPSC/2 and iPSC/860 hypercubes, which are 
compared with those obtained on a Cray Y-MP/464 and Convex C-220 mini- 
supercomputer. From this data we deduce the cost effectiveness of parallel 
processors in the field of computational chemistry. 

Key words: Computational chemistry application software-  Hypercube-con- 
nected multicomputers 

1 Introduction 

Parallel computers have the potential to perform numerical calculations much 
more cost-effectively than conventional supercomputers. The reduced cost of 
computational power arising from the introduction of such machines opens the 
door to a far more widespread and extensive adoption of numerically intensive 
methods, given that the recognised programming investment required is forth- 
coming. In this paper we consider the impact specifically of hypercube-connected 
multicomputers on computational chemistry, describing our own work in migrat- 
ing code to the Intel iPSC/2 and iPSC/860 hypercubes. Practical algorithms are 
described which address the two major problems in parallel computing: the need 
both to achieve load balancing, with an even distribution of work across the 
network of processors, and to minimise delays associated with migrating data 
between processors. 
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We present in Sect. 2 a brief overview of the second generation systems of 
hypercube architecture from Intel Scientific Computers. In Sects. 3 and 4 we 
consider the techniques employed in implementing a variety of computational 
chemistry applications on the machine, describing both quantum chemistry 
(Sect. 3) and macromolecular energy refinement (Sect. 4). In presenting perfor- 
mance figures in both areas, we show timings achieved in benchmarking the 
GAMESS [1] molecular electronic structure code and AMBER [2] molecular 
refinement code. 

The iPSC/2 and iPSC/860 used in this study are located at the SERC 
Daresbury Laboratory. The timings on the Cray Y-MP/464 were obtained at the 
SARA Supercomputer Centre, Amsterdam under a grant from the Stichting 
Nationale Computer Faciliteiten. 

2 The iPSC/2 and iPSC/860 hypercubes 

Both concurrent processors at Daresbury comprise 32 multiple instruction 
multiple data (MIMD) nodes placed on a hypercube with direct-connect channels. 
Each node of the iPSC/2 consists of an Intel 80386 processor (4 Mips in 32-bit 
arithmetic), with 4 Mbyte of memory. Enhanced floating point performance is 
achieved through a Weitek 1167 SX scalar accelerator (0.6 Mflop 64-bit or 
1 Mflop in 32-bit arithmetic). Vector processing on the nodes is available through 
a VX-vector accelerator (6.6 Mflop in 64-bit or 20 Mflop 32-bit). The vector board 
has 1 Mbyte associated memory which can be addressed, making a total of 
5 Mbyte node memory. This dual memory can, however, often lead to serious 
restrictions in vector processing on the cube. Migrating extrinsically vectorised 
code is often difficult given the 1 Mbyte restriction, while the need to continually 
move data between the SX and VX memory impacts sharply on performance. 

This memory constraint is significantly reduced on the iPSC/860 (or so-called 
GAMMA machine), where each node has a minimum of 8 Mbytes of memory, 
with 4 nodes of the Daresbury machine having 16 Mbytes. Each processor node 
now contains an Intel i860 microprocessor chip [3] which is clocked at 40 MHz 
and has an effective peak rating of 40 Mflop for the 64-bit arithmetic character- 
istic of scientific and engineering computation. Developments of the i860-multi- 
computer are at the heart of the DARPA-funded 'Touchstone Project', which 
includes within its set of milestones the development of a prototype 2000-node 
machine and 200 Mbytes/sec communications capabilities. 

At present, however, inter-node communications on both the iPSC/860 and 
iPSC/2 are handled through the same DMA (Direct Memory Access) node-con- 
troller. This provides a maximum 10.7 Mbyte/sec asynchronous communications 
network on eight bidirectional channels, each node having 7 channels for the 
network plus one used for I/O. Messages can be switched over a route specified 
by their header information without cpu intervention. In contrast to the first- 
generation iPSC/1 a cube may, from an application viewpoint, be considered as 
an ensemble of fully connected nodes, since there is now little more delay in 
long-distance messages than in neighbour-neighbour transfers. An obvious limi- 
tation, however, is apparent when considering the iPSC/860; as we shall see, 
while the cpu capability of each node has increased by at least an order of 
magnitude, the effective communication bandwidth is the same as its predeces- 
sor. Clearly we may expect only the most coarse grained of application codes to 
be capable of fully exploiting the iPSC/860. 
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Each cube is controlled by its own front-end processor, the system resource 
manager (SRM), which is an Intel System 310 microcomputer with 8 Mbyte 
memory. The SRM is linked directly to the cube through direct connect 
hardware, with access to other UNIX workstations provided over Ethernet and 
TCP/IP networks. With a UNIX System V operating system, the SRM compiles, 
links, debugs, allocates and communicates with the hypercube. In order to 
reduce loading on the SRM, Intel now provide cross-compilers, and 'remote 
hosting' software which enables users to run programs from other UNIX 
machines. Remote hosting is at present possible at Daresbury from either a Sun 
workstation or the Convex C-220. This capability of dividing the workload 
between a UNIX engine and the multicomputer provides a valuable resource 
given hosting by a powerful UNIX processor whose memory and CPU capabil- 
ities far exceed that of any single node of the multicomputer. It enables a 
balanced solution whereby the well defined highly parallelised compute-intensive 
parts of the application are allocated to the cube, while any significant serial or 
memory demanding component, together with pre- and post-analysis associated 
with the application, are performed on the host. This dual approach has been 
used to advantage in various application areas when linking the iPSC/2 with the 
Convex C-220. The corresponding iPSC/860-Convex C-220 combination is less 
attractive, given the increased memory and CPU performance of the i860 nodes. 

Each iPSC node carries its own multi-tasking operating system, called NX/2 
(Node eXecutive/2). An effective subset of UNIX, NX/2 provides multiple tasks 
with private address space, dynamic memory allocation, UNIX I/O, round robin 
scheduling of processes, and supports the DECON parallel debugger. The UNIX 
common object file format is supported and routines may be called from 
Fortran. NX/2 provides the program's interface to the Direct-Connect communi- 
cation network, with support provided for the sending and receiving of both 
synchronous and asynchronous messages. 

In addition to the hypercube-connected set of compute nodes, both iPSC/2 
and iPSC/860 address the requirements of high capacity, fast access mass storage 
through the Concurrent I/O System (CIO), an I/O subsystem that features an 
attached set of I/O nodes. Each I/O node has full access to the hypercube 
interconnect of the computational nodes, has 4 Mbytes or more of memory and 
a SCSI bus which connects to one or more high capacity drives. The I/O 
subsystem at Daresbury (connected to the iPSC/860) comprises four I/O nodes 
at present, each with two 574 Mbytes disks, permitting parallel random access to 
4 Gbytes of data from any of the hyperCube nodes. 

The software environment surrounding the hypercube, commonly referred to 
as the 'Concurrent Workbench', provides a range of facilities. On the iPSC/2 
compilers for Fortran-77, C, and concurrent Lisp are available, with VMS and 
Berkeley UNIX 4.2 Fortran extensions. Vector processing tools include the 
VAST2 vectorising pre-processor. VAST2 accepts Fortran-77 and -8X constructs 
and generates VecLib calls. It vectorises DO and IF loops, provides help and 
warnings, optimises performance, and provides a high-level interface to VecLib, 
a library of micro-coded vector routines, comprising the majority of the level-1 
BLAS [4]. Fortran-77 and C compilers are available on the iPSC/860 (from The 
Portland Group), with optimised BLAS routines provided in the library from 
Kuck and Associates. 

The Concurrent File System (CFS) software consists of specialised processes 
which run on the I/O nodes, and file management code which runs in conjunc- 
tion with the application on compute nodes. The UNIX programming interface 
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provides a single file system view, beneath which CFS manages parallelism and 
concurrent access to files. The standard for the I/O calls is the same UNIX 
System V running on the SRM, with support provided for both synchronous and 
asynchronous Fortran I/O. Finally, a parallel symbolic debugger, DECON, is 
provided for code development on the hypercube. DECON is designed for 
message-passing analysis and repair; it can inspect and modify variables by 
name, set break and trace points, set conditional break and trace points, 
single-step on statements and subroutines, list source code, create aliases and 
macros, and provides help facilities. 

Software is hosted by the SRM and remotely accessed from any UNIX 
workstation. Note that the iPSC/2 was installed at Daresbury in October 1988, 
and the iPSC/860 in July 1990. 

3 Quantum chemistry software 

The algorithms employed in quantum chemistry are, of course, computationally 
intensive and increased performance, through both algorithmic developments 
and the exploitation of new computer architectures, is continually being pursued 
to improve both accuracy and the size of molecular system amenable to 
treatment [5]. Of particular importance is the ability to locate minimum energy 
structures and transition states, allowing the study of reaction mechanisms. 
While expensive, such calculations are now routine following the development of 
efficient techniques for evaluating the gradient of the energy [6]. 

The molecular quantum chemistry program, GAMESS, which we shall use 
and discuss, approximates solutions to the Schr6dinger equation within both the 
Hartree-Fock and post Hartree-Fock frameworks. On-going development of 
the UK version of the code (GAMESS-UK) is carried out at Daresbury, with 
the program currently available on a wide range of supercomputers, superminis 
and superworkstations. The program provides for s, p, d and f-type cartesian 
Gaussian orbitals, with open- and closed-shell SCF treatments available within 
both RHF and UHF frameworks. These treatments are augmented by gener- 
alised valence bond (GVB), complete active space SCF (CASSCF), and more 
general MCSCF calculations. Ab initio core potentials are provided in both 
semi-local and non-local formalism for valence-only molecular orbital treat- 
ments. The analytic energy gradient is available for each class of wavefunction 
above. Geometry optimisation may be performed in either internal or cartesian 
space, using a quasi-Newton rank-2 update method, while transition state 
location is available through either a synchronous transit, trust region or 
'hill-walking' method. Force constants may be evaluated by either analytic 
methods (see below) or by numerical differentiation. Configuration interaction 
estimates of the correlation energy may be generated through conventional-CI 
(using table-driven selection algorithms), Direct-CI and Full-CI treatments. 

Considerable effort has been targeted to increasing both the range of 
computational methods available and the size of molecular system amenable to 
treatment. Recent additions to the code include both coupled Hartree-Fock 
calculations of molecular polarizabilities and perturbations due to nuclear dis- 
placements, allowing for the analytic computation of all the dipole and quadru- 
pole moment derivatives of a molecule. Analytic second derivatives (force 
constants) of the energy, analytic calculations of polarizability derivatives and 
the calculation of infrared and Raman intensities are now possible. Moiler-Pies- 
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set MP2 and MP3 perturbation theory calculations (with MP4 capabilities under 
development), include the analytic calculation of gradients, polarizabilities, 
dipole moment derivatives and force constants at the MP2 level. In addition to 
the Green's function OVGF and TDA methods for calculating ionisation 
spectra, an RPA (Random Phase Approximation) module has been implemented 
primarily for use in estimates of molecular excitation spectra. 

A range of techniques for treating large molecules is also provided. In 
addition to effectively open-ended Direct-SCF capabilities (enabling calculations 
up to 1000 basis functions), GAMESS now includes a direct-MP2 module for 
correlation estimates of large molecules. The computation of accurate electronic 
wavefunctions for large molecules is assisted through hybrid molecular orbital/ 
molecular mechanics and molecular dynamics methods. This involves coupling 
ab initio quantum mechanical (QM) calculations with molecular mechanical 
(MM) and dynamical (MD) calculations within GAMESS. The areas of applica- 
tion include molecular systems whose size precludes ab initio treatment, treating 
systems in which chemical bonds are broken or formed, e.g. transition states, and 
handling electronically excited states. As well as incorporating molecular me- 
chanics as a vehicle for handling large molecules, a wide range of semiempirical 
features will shortly be made available. 

In addition to the functionality outlined above, a variety of graphical 
analysis tools (targeted to superworkstation usage) and an interface into front- 
end model building capability is provided by the DISPLAY package developed 
at Daresbury. 

3.1 Sparse matrix multiply benchmarks 

Before considering the hypercube implementation of GAMESS, we present some 
statistics based on the sparse matrix multiply operation (MMO) to provide some 
idea of iPSC/2 and iPSC/860 node performance. The MMO operation is central 
to the efficient operation of modern quantum chemistry codes on vector proces- 
sors [7], it being possible both to extract near peak performance for this kernel 
and to formulate many QC steps around this operation. A comparison of the 
single processor sparse MMO performance on a variety of machines, including 
Supercomputers (Cray X-MP/416, IBM 3090-600E/VF and Convex C-3840 
(18 nsec clock)), Superminis (Convex C-220, FPS M64/60 and Alliant FX2808), 
workstations (IBM RS6000, Hewlett Packard 9000/7xx series and Apollo 
DN10020, DEC Station 5000/200, Silicon Graphics INDIGO and 4D/220, 
4D/320 and 4D/420, Stardent 1520 and 3020, Solbourne 4000 and Sun SPARC- 
Station 2/GS and 4/370) and Novel Architecture machines (Intel iPSC/2 (SX 
and VX node) and iPSC/860, and both T800-20 transputer and i860-based 
Meiko Computing Surfaces), is given in Table 1. In this benchmark a series of 
MMOs (R = A x B) involving matrices of rank 10, 20, 3 0 , . . . ,  100 were per- 
formed. Each MMO was performed a number of times, this number being 
inversely proportional to the rank, so that the summed CPU times of Table 1 
refer to 100 MMOs of rank 10 matrices, 90 of rank 20 matrices, and so on up to 
10 MMOs for matrices of rank 100. Figures are presented for both 'full' (0% 
sparse) and 50%-sparse B matrices, with the performance figures referring to 
code written entirely in Fortran. 

A striking feature of the benchmark is that a single SX node of the iPSC/2, 
while performing at approximately the same speed as the T800 20 MHz Trans- 
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Table 1. Sparse MMO benchmark. Total CPU times (sec) for a 
series of sparse MMOs (R = AB, see text) implemented in Fortran 

Machine Sparsity in B-matrix 
0% 50% 

VAX 8350 1005.6 530.4 

T800-20 448.6 231.2 
iPSC/2 SX-node 445.9 230.3 
iPSC/2 VX-node 105.0 105.0 
Meiko MK086 i860 35.7 18.4 
iPSC/860 RX-node 21.2 11.0 

Solbourne $4000 74.4 38.4 
SUN 4/370 57.4 30.6 
HP/Apollo DN10020 44.2 22.8 
Silicon Graphics 4D/220 39.4 20.1 
DEC $5000/200 33.1 17.1 
Silicon Graphics INDIGO 31.0 14.3 
Silicon Graphics 4D/320 27.9 14.4 
SUN SPARCstation 2/GS 27.5 14.4 
Stardent 1520 26.6 17.0 
Silicon Graphics 4D/420 23.7 12.1 
Stardent 3020 14.7 9.1 
IBM6000 Model 320 14.6 7.1 
IBM6000 Model 530 9.3 4.9 
Hewlett Packard 9000/720 8.5 4.8 
Hewlett Packard 9000/730 6.7 3.5 

Alliant FX2808 (1CE) 17.2 9.3 
FPS-M64/60 17.1 8.9 
Convex C-220 10.6 6.5 

IBM 3090-600-E/VF 11.3 6.0 
Convex C-3840 5.2 3.3 
Cray X-MP/416 2.8 1.8 

puter, is nevertheless some 20 times slower than the RX-node of the iPSC/860. 
The i860 performance is double that of the Apollo DN10000 and Silicon 
Graphics 4D/220, and approximately 50% of that on the IBM RS6000 Series 
530 and HP 720. Note that the IBM RS6000 Series 320 is the same speed as the 
Stardent 3020, twice the speed of the SGI 4D/320 and DEC 5000, and between 
4 -5  times the speed of the SUN and Solbourne machines. 

One additional feature of the MMO benchmark not apparent in Table 1 is 
the significantly enhanced performance found on all machines when comparing 
assembly language MMO to Fortran MMO. Improvement factors of 3.2 
(Cray X-MP), 4.2 (IBM 3090/VF), 3.1 (Convex C-220) and 3.4 (FPS-M64/60) 
with assembly language implementations point to the crucial role of optimised 
library routines. A corresponding factor of 3.8 is found when using the Kuck 
Library on the i860. It is certainly the case that a good deal of the i860 potential 
remains undelivered in present releases of the Fortran compiler, which provide a 
ceiling of 4 - 6  Mflop in scalar code and little more in vector. The 20-30 Mflop 
achievable in hand-coded level-3 BLAS seems possible at present only through 
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Table 2. Sparse MMO benchmark. Total CPU times (sec) for a series 
of similarity transformations (H = QtHQ, see text) using both scalar 
and vector algorithms 

Machine Algorithm 
Scalar Vector 

VAX 8350 7285.8 9834.8 

T800-20 5176.0 4439.0 
iPSC/2 SX-node 3809.6 4456.1 
Meiko MK086 node 240.1 262.2 
iPSC/860 RX-node 118.8 60.1 

SOLBOURNE $4000 711.9 750.2 
SUN 4/370 615.9 609.6 
Dec $5000/200 368.3 445.1 
Silicon Graphics 4D/220 344.8 440.3 
SUN SPARCstation 2/GS 333.3 394.0 
Silicon Graphics INDIGO 285.0 356.4 
Silicon Graphics 4D/320 245.5 329.5 
HP/Apollo DN10020 273.8 245.9 
Stardent 1520 236.9 252.8 
Silicon Graphics 4D/420 200.1 273.8 
Stardent 3020 160.4 144.2 
IBM6000 Model 320 139.0 73.3 
Hewlett Packard 9000/720 111.2 60.4 
IBM6000 Model 530 96.3 46.9 
Hewlen Packard 9000/730 89.9 48.4 
IBM6000 Model 540 66.9 38.4 

Alliant FX2800 (ICE) 243.1 86.3 
Alliant FX2800 (3CE) 39.5 
FPS-M64/60 141.2 50.8 
CONVEX C-220 124.1 60.1 
CONVEX C-3840 55.1 25.4 

l ibrary  specification. The  avai labi l i ty  and degree o f  funct ional i ty  o f  l ibrary  
software are, we believe, i m p o r t a n t  issues when consider ing cost-effective perfor-  
mance.  This  effect is evident  f rom the second benchmark  which, given in Table  
2, involves pe r fo rming  a series of  s imilar i ty  t ransforms  ( Q t H Q )  using bo th  a 
scalar  and  vector  a lgor i thm.  In the la t ter  case we utilise the BLAS l ib ra ry  rou t ine  
D G E M M  (where  avai lable)  for pe r fo rming  the requisi te M M O s ,  in the former  
case the do t  p roduc t  BLAS rout ine,  D D O T .  The i860 is seen to exhibi t  
impressive per formance ,  runn ing  the same speed as the Convex C210 and  
Hewlet t  P a c k a r d  H P  720, and  significantly faster  than  the I B M  M o d e l  320. The  
la t ter  is now twice the S ta rden t  3020, between 3 .5 -6 .5  t imes the SGI  4D/320, 
D E C  5000 and S P A R C S t a t i o n  2 and  9 - 1 0  t imes the S U N  4/370 and Solbourne .  

3.2 Direct-SCF calculations 

The conven t iona l  q u a n t u m  mechanica l  S C F  procedure  is carr ied out  in two 
steps, the first involving the eva lua t ion  o f  integrals  over  basis functions.  The 
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most time consuming of these integrals has the form: 

(ij/kl)= .f.i  (°i( 1)~bi (1) 1/r12 qbk(2)qS,(2)a~l ~r2 (1) 

For a system with n basis functions there are n4/8 of these integrals, leading to 
a computational complexity for this step of O(n4). The second step is the 
calculation of the SCF energy and molecular orbitals. This iterative procedure 
requires the repeated O(n 4) construction and O(n 3) diagonalisation of a Hamilto- 
nian matrix from the pre-calculated integral list. The Hamiltonian, or so-called 
Fock, matrix has the form: 

F~j = H,j + ~, ~ Pk,[(ij/kl) - 1/2(ik/jl)] (2) 
k l 

where H is a one-electron matrix and P the density matrix formed from the SCF 
vector. In the direct-SCF procedure [8] the integral list is recalculated every SCF 
iteration, removing the need to store the two-electron integrals. While the 
calculation of the integrals and their subsequent incorporation in the Fock 
matrix may be expected to dominate the computation, given their O(n 4) depen- 
dence, there are several O(n 3) steps occurring in the SCF procedure. These 
include matrix multiplication (associated with both the back-transformation of 
the eigenvectors and the implementation of the DIIS procedure [9] for accelera- 
tion of convergence), matrix orthogonalisation and the diagonalisation of the 
Fock matrix. 

The size of system amenable to ab initio treatment has increased significantly 
with the development of direct-SCF algorithms, given the removal of the 
historical bottleneck of disk storage associated with the O(na)-integral lists. 
Furthermore the direct-SCF/gradient technique is well suited to parallel process- 
ing since the evaluation of the energy- and derivative-integrals may be readily 
partitioned over the component nodes of a multicomputer, with minimal com- 
munication overheads. Our initial programming strategy for the iPSC/2 thus 
focused on the direct-SCF gradient capabilities of GAMESS, aiming to provide 
a parallelised code (80000 lines of Fortran) capable of performing RHF/UHF/  
GVB calculations for geometry optimisations and transition state characterisa- 
tions. The implementation involved parallelising both the one- and two-electron 
integral plus derivative integral sections of the code (for both the rotated axis 
[10] and Gauss-Rys quadrature [11] methods) within the framework of the 
direct-SCF method. Standard features of the program, including convergence 
aids (DIIS), saddle point algorithms and pseudopotential capabilities (with 
gradients) were retained in the parallel code. 

The rotated axis integral code due to Pople and co-workers [ 10] is now over 
a decade old and, although completely scalar code, still competes with recent 
vectorised integral programs for integrals over contracted sp shells. In order to 
minimise overall memory requirements, we adopted the scalar version of the 
code for the parallel implementation. Note that while the code has been 
vectorised in an extrinsic fashion to yield speed increases of anything from two 
to eight [12], the memory required prohibited adopting this version on the 
iPSC/2. In essence each node runs the same integral code, looping over all 
symmetry distinct integrals, with the work divided using a straightforward 
partitioning of the workload through: 

MOD(ijkl, nodes), eq. mynode (3) 
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IJKL=O 
DO I,J,K,L Y 4-fold loop over unique shells 

I JKL= IJKL+ I  
IF ( MOD (IJKL, NODES). EQ. MYNODE ) THEN 
! Compute and store shell information 
DO I I= I ,NGI  ! Loop over primitives in shell I 

DO J J = I , N G J  ! and for shell J 
DO KKLL=I,NGK*NGL ! Loop over Kand L primitives 

f Compute 70 components in scalar fashion 
END DO 
! Form 256 integral contributions 

END DO 
END DO 
! Rotate 256 integrals into molecular frame 
! Add contributions to partiaI-Fock Matrix, HNODE 
END IF 

END DO 
T Generate total Fock-Matrix 
I form node contributions, HNODE 
CALL GDSUM (HNODE, LENGTH, SCRATCH) 

Fig. 1. ParalMised direct-SCF structure 

where ijkl is a running index over the two-electron integrals, nodes the total 
number of nodes available, and mynode an integer labelling the particular node 
in question. Thus an integral is evaluated if the integral index modula the total 
number of nodes is equal to the node identification number. The parallelised 
node structure of the direct-SCF code is sketched in Fig. 1, using as an example 
the integral routine SP1111 which computes integrals of the form (sp sp ] sp sp), 
though what is shown is directly applicable to the other routines. Note that 
exactly the same method for partitioning the workload can be applied to the 
calculation of the derivative integrals. 

Each node thus calculates a unique sub-set of integrals, adding the integral 
contributions to its own copy of the Fock matrix. The resulting set of n partial 
Fock matrices are then combined, with the resulting total Fock matrix dis- 
tributed to all the nodes using the global communication utility (GDSUM) 
available on the cube. Orthogonalisation and diagonalisation of the total Fock- 
matrix are at present performed in serial fashion on each node and are being 
parallelised [13] to improve overall performance. 

One feature of the practical details of the work is worthy of mention here. 
While the direct-SCF method removes the major I/O component associated with 
the two-electron integral lists, there still remains a disk requirement for handling 
restart information and the storage of various scratch arrays. Prior to installa- 
tion of the CFS, this requirement was handled by using the memory of the Host 
System Resource Manager (SRM) as a virtual disk for the cube, since I/O to the 
hard disk of the SRM proved too inefficient for this purpose. 

Timings from a geometry optimisation run on a 32-node partition of the 
iPSC/2 (SX-nodes) and iPSC/860, and on the Convex C-220 using the GAMESS 
direct-SCF capabilities are given in Table 3. The example provides a perfor- 
mance comparison for a 6-31G SCF/gradient geometry optimisation of nitroben- 
zene, featuring a total of 91 basis functions. Considering initially the iPSC/2, the 
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Table 3. Performance figures (sec) for a 6-31G SCF/gradient geometry optimisation of nitrobenzene 

Step Dependence Convex C-220 iPSC/2-SX iPSC/860 
CPU time Elapsed time Elapsed time 
(sec) (sec) (sec) 

2-electron O(n 4) 7991 3353 280 
integrals 
2-electron O(n 4) 2666 907 87 
gradient integrals 
SCF (diag., MMO) O(n 3) 118 6167 486 

Total 10775 10427 853 

overall timings suggest that a 32-node iPSC/2 performs at approximately the 
same speed as the Convex C-220. What is perhaps more illuminating is the 
degradation in performance caused by the serial O(n 3) steps; while the paral- 
lelised integral and derivative integral O(n 4) steps are running some 2-3 times 
faster than the Convex, the serial steps have grown to dominate the computa- 
tion. This is not surprising when taken in the context of the MMO benchmarks 
of Table 1, where the C-220 is seen to be some 40 times faster than a single SX 
node of the iPSC/2. Attempts to vectorise the serial steps reduced the 32-node 
O(n 3) timing from 6167 to 3379 seconds, and hence the overall time to 7622 
seconds. This problem can, however, only be alleviated by parallelising the 
diagonalisation and matrix multiply operations, given the relatively slow single 
processor speed of the iPSC/2. Such attempts for the MMO reduced the 32 
SX-node O(n 3) timing from 6167 to 2661 seconds, and the overall time to 6921 
seconds. 

Turning to the iPSC/860, we find the 32-node hypercube to be performing 
some 30 times faster than the Convex in the O(n 4) steps, with the overall 
performance, however, downgraded to 12 times the Convex because of the serial 
O(n 3) code. The iPSC/860 timings compare favourably with those recorded on 
the Y-MP (1841 seconds for the three steps of Table 3), suggesting the 32-node 
hypercube is performing some twice the speed of the single-processor Cray. 

We show in Table 4 two further sets of timings from direct-SCF calculations 
on the trinitrotoluene and morphine molecules, both conducted in a 6-31G basis 
set (154 and 227 basis functions respectively). Timings are presented for the 
Convex C-220, single-processor Cray Y-MP and iPSC-860, the latter as a 
function of the number of nodes. We note that in the largest case, the 32-node 
iPSC/860 is performing some 3 times the single-processor Y-MP, and of the 
order of 20 times the Convex C-220. The timings also reveal a considerably 
better scaling as a function of the number of i860 nodes in the larger morphine 
calculation. The serial O(n 3) code in the trinitrotoluene calculation takes some 
300 seconds in total, and is the dominant part of the calculation on 32-nodes. In 
the no-symmetry morphine case, the O(/l 4) step remains dominant, requiring 
some 1500 seconds in the 32-node case, compared to the O(n 3) timing of 700 
seconds. 

Finally, we note that implementation of the conventional SCF procedure is 
straightforward given the CIO. In this case each node writes its own partial list 
of two-electron integrals to a separate file on the I/O subsystem, and proceeds to 
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Table 4. Total times for 6-31G direct SCF calculations of trinitro- 
toluene and morphine (sec) 

Machine Trinitrotoluene Morphine 
(154 GTOs) (227 GTOs) 

iPSC/860 (Nodes) 

1 3929 
2 2120 
4 1214 10517 
8 761 5543 

16 557 3352 
32 489 2276 

Convex C-220 4879 45000 
CRAY Y-MP 616 6622 
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process just this list in each cycle of the iterative SCF process. Again each node 
will be responsible for generating in parallel a partial Fock matrix, which are 
subsequently combined using the global GDSUM routine, and diagonalised in 
serial fashion on each node. 

3.3 Integral transformation 

The iPSC Concurrent I/O subsystem (CIO), permitting parallel access by the 
compute nodes of the hypercube to a given file on the subsystem, provides a key 
feature in implementing standard quantum chemistry codes with a sizable I/O 
requirement. The integral transformation, or so called '4-index' transformation is 
needed to transform the two-electron integrals from the original orbital basis, ~b 
to the basis of the molecular orbitals (MO) ~ as calculated in the preceding SCF 
calculation: 

@ = Z Cp,,qSi (4) 
i 

The integrals (pq/rs) are thus computed as: 

(pq/rs) = ~ Cp,iCq,jCr,kCl,s(ij/kl ) (5) 
i,j,k,1 

Through suitable sorting of the integrals so that for a given i, j all (ij/kl) integrals 
are present in core the 4-index transformation may be arranged via a series of 
matrix-multiplications at a total cost of n 5 floating point operations and two 
sorting steps of n 4 integrals each. The starting point for the transformation is the 
set of  m-partial integral files associated with each node residing on the concur- 
rent file system. The parallel version of the code remains based on the Yoshimine 
algorithm [14] involving, through the formation of partial sums to reduce the 
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computational complexity, the following phases: 

• Sorting the atomic integrals [(ij/kl)] so that for a given 0" pair index, all kl are 
available. A disk-bin sort method is employed, with each node sorting its own 
partial integral file and generating its own sortfile. 

• The 0' pair indices are divided over the nodes. Each node then reads the 
required integrals from its own, and the ( m -  l) partial sortfiles generated by 
the other processors. The key to this implementation is the ability of  the I/O 
subsystem to support simultaneous file access by multiple nodes. 

• The transformation of integrals to semi-transformed form involv- 
ing M = N ( N +  1)/2 matrix multiplications (MMOs)  of the form Q*AQ 
(where Q is the eigenvector array, A the matrix of  integrals of  common 
index pair •) is then distributed evenly over the nodes, each node performing 
M/m MMOs. 

Our experience on the iPSC/2 suggests that the 4-index transformation is 
well suited to distributed memory M I M D  machines given shared disk cap- 
ability. Shown in Table 5 are the timings, as a function of the number of  scalar 
(SX) nodes, achieved on a 46 basis function transformation. Although the 
scalability is not as impressive as the integral generation, this may be 
largely attributed to the limited size of the example, when the n 5 cpu depen- 
dence of the transformation will not be dominant. Considering the iPSC/860 
performance, we show in Table 6 timings from both the Sorting and Calcula- 
tion phases of  an integral transformation featuring a larger 90 basis function 
calculation. 

Table 5. Timings (sec) for integral generation and integral transfor- 
mation as a function of iPSC/2 node configuration (see text) 

iPSC/2 Node Integral Integral 
configuration g e n e r a t i o n  transformation 

Time (sec) Time (sec) 

1-NODE 162 1058 
2-NODE 81 586 
4-NODE 42 308 
8-NODE 22 228 

16-NODE 13 136 

Table 6. Timings (sec) for integral transformation (90 GTOs) as a function of 
iPSC/860 node configuration (see text) 

iPSC/860 Node SORT CALC TOTAL 
configuration Time (sec) Time (sec) Time (sec) 

1-NODE 250 1167 1417 
2-NODE 149 673 822 
4-NODE 96 385 481 
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3.4 Direct-CI calculations 

Turning to the post Hartree-Fock methods, we focus attention on the configura- 
tion interaction (CI) method. In CI, solutions to the n-electron Schr6dinger 
equation are sought in the space of n-electron configurations constructed as spin 
adapted antisymmetric products of orbitals obtained in the SCF-calculation. In 
order to reduce the size of the problem only configurations differing by at most 
2 orbitals with respect to one or more reference configurations are selected. The 
resulting linear variational problem (size 105-107) is solved iteratively requiring 
the evaluation of a CI-matrix CI-vector product every iteration; this product 
(z): 

Z = H e  (6) 

where: 

H(#, v) = ~ Aij(#, v)(i/j) + ~ Bak,(#, v)(ij/kl) (7) 
q ijkl 

is calculated directly from integrals, coupling coefficients A and B depending on 
the spin-couplings #, v and CI-vector elements (C) [15]. 

An efficient implementation requires the integrals to be sorted involving an 
effort O(n4). The HC matrix-vector product may then be obtained through a 
series of matrix multiplications at a total cost of O(n6). Our initial efforts have 
focused on porting the Direct-CI program due to Saunders and Van Lenthe [16] 
to the hypercube. This code is essentially a model configuration symbolic-driven 
program, where only the all-external part is integral-driven. There are three 
major components to consider: 

1. Integral sorting; 

2. Symbolic matrix element generation for model-configurations for each inte- 
gral type. This involves evaluating the coupling coefficients for each pair of 
model-configurations and includes forming complete matrix elements for vacuum 
states; 

3. The calculation of HC = Z, the CI matrix-vector product, using information 
from 1 and 2. 

3.4.1 Parallel implementation. The division of the workload in the parallel 
implementation is defined by the calculation of symbolic interactions between 
model-configurations. Model symbolic matrix element generation is characterised 
by a double-loop over model-configurations, with the parallel division employed 
over the outer loop. Such a strategy enables generation of the Z-vector to be 
performed completely in parallel, driven by the parallelism imposed on the 
symbolic generation. 

The implementation is centered around two categories of file residing on the 
CIO system, local files and a single common file. The latter category is only 
accessed in write mode by the root (or node-0), generally after some global 
operation, but may be read by all nodes of the cube. It contains frequently 
accessed data which is not dependent as such on the configurations e.g. the 
(ab/cd), (ia/bc), (ij/ab), (ia/jb), (ij/ka) integrals. Local files have a similar role to 
the partial AO integral files used in conventional SCF and partial MO integral 
files generated in the transformation modules. Each processing node will 
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uniquely access its own local file, which contains symbolic information peculiar 
to the node, arising from the parallel symbolic matrix element generation. The 
fully internal matrix elements (ijkl) are included in this set. The following steps 
are performed: 

1. The node partial MO integral files are sorted and merged (using the global 
GDSUM routine) for each integral type, prior to output by node-0 to the 
common file (all except for the (O'/kl) integrals). In addition, the (ij/kl) integrals 
and those required for the Fock-matrices are also sent to the other nodes. 

2. The parallel model symbolic matrix element generation produces a symbolic 
matrix element (PSME) list on each node's local file. 

3. The PSME list, together with the required integrals and CI coefficients are 
processed, producing a partial HC vector on each local file. Each node thus has 
access to a complete copy of the C vector, a complete set of integrals (both on 
the common file) and forms its own contribution to the Z-vector. 

4. The partial Z-vectors are combined, again using the global routines, and 
written to the common file. The CZ vector-vector products needed may be 
divided among the nodes (not the rate determining step). A new solution is then 
determined, with the perturbation vector written to the common file. The iterative 
procedure then returns to step 3 above. 

Some additional detail on the present implementation is given below: 

• The Fock-matrix contributions, which are pre-summed in the integral-sorting 
stage using the occupations of the configurations, represent a special case. They 
could be treated as normal (effective) 1-electron integrals and written to the 
common file, whereupon a given node at Z-vector generation time would simply 
select those required. At present we generate them in parallel on each node, 
requiring the Fock-integral generation to be precisely synchronous with the 
corresponding symbolic generation. 

• A complete copy of the Z-vector is written to each local file. Since the division 
of the workload is by interaction (i.e. symbolic), any part of the C- or Z-vectors 
may be needed. Note, for example, that an interaction between an N - 2 state a 
and N - 2 state b is used to update Za (using Cb) and Z b (using Ca). Thus while 
the integral storage is just that in the serial code, the parallel implementation 
suffers from having to keep multiple copies of the Z-vector on disk during its 
construction. 

• After Z-vector generation, the partial Z-vectors are globally summed and 
re-divided over the nodes, when the Davidson diagonalisation may proceed. 

• In the Davidson diagonalisation, the C- and Z-vectors may be distributed over 
the nodes, with each node housing a partial vector. In practice only dot-products 
of C and Z (to form the projected H-matrix), and of C and the previous C (to 
orthogonalise the perturbation vector) are required. The global summation 
routine is then used to sum the partial dot-products. The advantages of this 
scheme are that the disk-storage for the vectors is just that of the single-node 
case, the required dot-products are completely parallel, and efficient use is made 
of node memory. 

• Since no symbolic term is generated for the (ab/cd) N -  2 I N -  2 interaction, 
some additional work is required in parallelising this interaction. 
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• No effort as yet has been made to optimise I/O efficiency, although we note 
that for large cases the calculation scales well in terms of the number of MMO 
operations performed per I/O operation. 

The present implementation relies heavily on the distributed I/O capabilities 
of the iPSC, and only in the Davidson makes efficient use of the combined node 
memory available. Its major advantage is good node scalability, and a structure 
that retains code portability. 

4 Molecular mechanics and molecular dynamics software 

In this section we describe a parallel implementation of part of the AMBER 
package (Assisted Model Building with Energy Refinement) due to Kollman and 
co-workers [2]. We have concentrated on two representative applications of the 
AMBER force field, the molecular mechanics (MM) energy minimisation of a 
structure by conjugate gradient and/or steepest descent techniques and the 
calculation of free energy differences by molecular dynamics (MD) simulations. 

4.1 Parallelisation strategy 

A large part (typically greater than 90%) of the computation time for MM and 
MD applications is spent in the evaluation of contributions to the energy and 
forces on the atoms arising from non-bonded and H-bonded atom pairs. This 
process is usually split into two stages - the generation of a list of pairs of atoms 
which are close enough to warrant force and energy evaluation (the pair- or 
neighbour-list), and the energy and force calculation for each entry in this list. 
For large systems the former is more time-consuming, and considerable savings 
in computational cost arise from the fact that the pair-list does not need to be 
updated for every cycle of a MM minimisation or MD simulation (it is typically 
updated every 10-100 cycles). 

ParalMisation can easily be achieved by dividing the pair-list over a number 
of processors, and summing the contributions to the energy and forces at the end 
of each cycle. The implementation we have chosen involves running a modified 
version of the original (MM or MD) codes [2] on one node (referred to as the 
master), and a small (slave) program on the remaining nodes. Initially the slave 
program was responsible only for the generation of a partial pair-list and 
associated energies and forces. We subsequently included code to perform the 
proper and improper torsion angle terms on the slave nodes as well, since the 
time required to calculate these terms on the master node often proved signifi- 
cant after the non-bonded contacts had been distributed over 8 or more nodes. 

Contributions to the energies and forces from the remaining terms in the 
energy expression (e.g. bond stretch and angle bend) are performed on the 
master. After collecting the results from the rest of the processors (by a call to 
a global summation routine), the master node can then update the atom 
positions, and send the new coordinates to the slave nodes. 

An alternative scheme (which we have not yet implemented) involves running 
a modified version of the whole code on every node. Each processor is responsi- 
ble for a subset of the force and energy terms, but, after global summation, the 
next set of atom positions are computed independently on every node. The 
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advantage of this scheme is that the communication of the coordinates from 
master to slaves is avoided. However, a large amount of topology data and 
executable code is present on all the slave nodes, reducing the memory available 
for pair-list storage, and thus the size of system that may be studied. However, 
this scheme may well prove preferable to the master,slave implementation in the 
future as larger node memories become available. 

To achieve load balancing, it is important to distribute the pair-list in such a 
way that a similar number of atom pairs are handled by each slave node. In 
practice this is achieved by allocating all i - j  pairs (i ~<j) for a set of atoms i with 
i~ ~< i ~< i 2 to a single node, and determining the atom indices il and /2 for each 
node. This task is performed by the master node immediately prior to each 
pair-list generation on the slave nodes. The division of the atom list in this way 
requires knowledge of the number of i - j  pairs associated with each atom i. This 
is initially obtained by performing a 'dummy' pair-list evaluation on the master 
node (in which the pair-list is not stored but the pairs associated with each atom 
are counted), and then updated after each pair-list evaluation on slave nodes by 
passing the appropriate data back to the master. 

4.2 Molecular mechanics 

In this section we present sample timings for the parallel implementation of the 
MINIM module on the Intel iPSC/2 and iPSC/860 multicomputers. Timings for 
a single processor of a Convex C200 are given for comparison. Table 7 contains 
elapsed timings as a function of number of nodes for a single cycle of minimisation 
of the protein alphalytic protease, (1755 atoms, 229,898 non-bonded interactions). 

Results for a larger example (which because of memory limitations on the 
master node could not be run on the iPSC/2) are given in Table 8. The system 
under study in this case was the enzyme thermolysin (6391 atoms, 1,029,628 
non-bonded interactions). 

A comparison of the timings for the iPSC/2 with those for the iPSC/860 clearly 
show the effect of the increase in processing speed without a change in the 
communication times. The result is rather poor scalability of the processing rate 
with number of nodes, and the problem is most severe for the smaller example, 
since the ratio of the number of atoms to the number of non-bonded contacts is 
smaller here. A consideration of the effects of increasing the communications rate 
is given below. 

Table 7. Timings (sec) for a cycle of  molecular mechanics minimisation of  
protein alphalytie protease as a function of node configuration (see text) 

Node configuration iPSC-2 iPSC-860 

2-NODE (1 master, 1 slave) 42.22 2.25 
4-NODE (1 master, 3 slaves) 14.9 0.90 
8-NODE (1 master, 7 slaves) 6.97 0.53 

16-NODE (1 master, I5 slaves) 4.39 0.41 
32-NODE (1 master, 31 slaves)  2.94 0.41 

Convex C-210 2.24 
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Table 8. Timings (sec) for the molecular mechanics min- 
imisation of protein thermolysin as a function of iPSC/860 
node configuration (see text) 

Node configuration Time (sec) 
minimisation 

2-NODE (I master, 1 slave) 9.67 
4-NODE (1 master, 3 slaves) 3.66 
8-NODE (1 master, 7 slaves) 2.03 

16-NODE (1 master, 15 slaves) 1.54 
32-NODE (1 master, 31 slaves) 1.29 

Convex C-210 7.57 

4.3 Free energy difference calculations 

The GIBBS module of  the A M B E R  package computes the difference in free 
energy between two species by MD simulation. The procedure relies on the fact 
that although the absolute value of  the free energy for a given system cannot 
readily be determined by a single simulation, it is possible to estimate the change 
in free energy associated with a small perturbation of the system. By gradually 
mutating one system into another (by smoothly changing the force field parame- 
ters) and summing the free energy changes associated with each mutation step, 
it is possible to estimate the free-energy difference between the species. Clearly 
any MD algorithm in which the non-bonded contributions to the energy and 
forces dominate the computat ion time can be parallelised by the algorithm 
described above and illustrated for the M M  calculation. We show in Table 9 
elapsed timings from the domain implementation as a function of number of  
nodes for 1 cycle of  molecular dynamics for the mutation of cytosine to 
iminocytosine in a bath of  263 water molecules (804 atoms, 100,778 non-bonded 
interactions). 

As for the M I N I M  module, the iPSC/860 figures indicate that the perfor- 
mance on larger hypercubes (more than 8 nodes) is limited by the cost of  the 
communications vide infra. 

Table 9. Timings (sec) for a single cycle of molecular dynamics for the 
mutation of cytosine to minocytosine (see text) 

Node configuration iPSC-2 iPSC-860 

2-NODE (1 master, ! slave) 32.84 2.62 
4-NODE (1 master, 3 slaves) 12.21 1.13 
8-NODE (1 master, 7 slaves) 7.28 0.72 

16-NODE (1 master, 15 slaves) 5.08 0.58 
32-NODE (1 master, 31 slaves) 3.18 0.43 

Convex C-210 1.21 
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Since the results are obtained from a statistical analysis of the simulations, it 
is also possible to parallelise MD computations by performing an independent 
simulation on each processor, and combining the results from each run in the 
statistical analysis. This approach has the advantage that communication be- 
tween processors is minimal, but as the pair-list is not distributed it is not 
suitable for large systems if memory on the nodes is limited. Another drawback 
in some applications is the fact that long-term fluctuations may not manifest 
themselves in a shorter MD run. 

4.4 Enhanced communications 

It was noted above that the scalability of the computation rate with number of 
nodes is limited by the cost of communications. We have thus chosen to Consider 
the consequences for performance of a ten-fold increase in communications 
speeds, this being the improvement available in the next generation of Intel 
multicomputers (e.g. the DELTA prototype at CalTech). As an illustration, we 
consider the larger of the two examples (thermolysin) given above for the 
MINIM program, running on a 32 node partition of the iPSC/860. The time for 
each cycle, as given in Table 8 is 1290 ms. A breakdown of this cycle time is 
given in Table 10, together with projected figures based on a ten-fold increase in 
communications speeds. 

Clearly the higher communications rates result in a much more acceptable 
scaling of performance, with communications corresponding to about 20% of 
the job cost. 

5 Conclusion 

We have outlined the present use and impact of the iPSC/2 and iPSC/860 
hypercube-connected multicomputers in computational chemistry, describing 
code implementation and subsequent performance in both quantum chemistry 
and macromolecular modelling (MM and MD). Experience to date suggests that 
the strength of the iPSC machines lies in their ease of use, standard UNIX and 
Fortran environment and the high degree of functionality associated with the 
Concurrent File System. The CFS has, for example, provided the means for 
removing the perceived bottleneck of the integral transformation step in quan- 
tum chemistry applications on distributed memory machines [14]. 

TaMe 10. Breakdown of the cycle time for the thermolysin minimisation (milliseconds) and projected 
times given a 10-fold increase in communications speeds 

Operation Time (iPSC/860) Time (projected) 

Send coordinates to nodes 300 30 
Parallel computation 330 330 
Global summation 630 63 
Compute new coordinates 30 30 

Total 1290 453 
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Experience on the i860-based Intel iPSC/860 has proved encouraging. The 
problems experienced with the iPSC/2 in adopting a coarse-grain approach, 
namely the somewhat restrictive node memory, the dual nature of the vector 
board memory, and the degrading effect of serial code, have been significantly 
alleviated with the iPSC/860. It must be said however that the straightforward 
migration of the direct-connect message passing hardware from the iPSC/2, and 
in a similar fashion the CIO system, has rendered the machine extremely 
unbalanced compared to its predecessor, highlighting the need for direct al- 
gorithms to truly exploit the present configuration. Having issued that proviso, 
we do believe that the i860-based multicomputer will prove at least an order of 
magnitude more cost-effective in computational chemistry than the recognised 
minisupercomputer alternatives, given continued enhancements to the present 
i860 FORTRAN compiler, and the provision of a broader library of optimised 
software. 
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